3.2534 \(\int \frac{(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)} \, dx\)

Optimal. Leaf size=86 \[ \frac{11 \sqrt{5 x+3}}{7 \sqrt{1-2 x}}-\frac{5}{3} \sqrt{\frac{5}{2}} \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )-\frac{2 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{21 \sqrt{7}} \]

[Out]

(11*Sqrt[3 + 5*x])/(7*Sqrt[1 - 2*x]) - (5*Sqrt[5/2]*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/3 - (2*ArcTan[Sqrt[1 - 2
*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(21*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0291158, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {98, 157, 54, 216, 93, 204} \[ \frac{11 \sqrt{5 x+3}}{7 \sqrt{1-2 x}}-\frac{5}{3} \sqrt{\frac{5}{2}} \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )-\frac{2 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{21 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^(3/2)/((1 - 2*x)^(3/2)*(2 + 3*x)),x]

[Out]

(11*Sqrt[3 + 5*x])/(7*Sqrt[1 - 2*x]) - (5*Sqrt[5/2]*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/3 - (2*ArcTan[Sqrt[1 - 2
*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(21*Sqrt[7])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)} \, dx &=\frac{11 \sqrt{3+5 x}}{7 \sqrt{1-2 x}}-\frac{1}{7} \int \frac{58+\frac{175 x}{2}}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=\frac{11 \sqrt{3+5 x}}{7 \sqrt{1-2 x}}+\frac{1}{21} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx-\frac{25}{6} \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=\frac{11 \sqrt{3+5 x}}{7 \sqrt{1-2 x}}+\frac{2}{21} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )-\frac{1}{3} \left (5 \sqrt{5}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )\\ &=\frac{11 \sqrt{3+5 x}}{7 \sqrt{1-2 x}}-\frac{5}{3} \sqrt{\frac{5}{2}} \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )-\frac{2 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{21 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0567795, size = 82, normalized size = 0.95 \[ \frac{1}{294} \left (\frac{462 \sqrt{5 x+3}}{\sqrt{1-2 x}}+245 \sqrt{10} \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )-4 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^(3/2)/((1 - 2*x)^(3/2)*(2 + 3*x)),x]

[Out]

((462*Sqrt[3 + 5*x])/Sqrt[1 - 2*x] + 245*Sqrt[10]*ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]] - 4*Sqrt[7]*ArcTan[Sqrt[1 -
 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/294

________________________________________________________________________________________

Maple [B]  time = 0.012, size = 131, normalized size = 1.5 \begin{align*} -{\frac{1}{1176\,x-588} \left ( 490\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) x-8\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x-245\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) +4\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +924\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}\sqrt{3+5\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x),x)

[Out]

-1/588*(490*10^(1/2)*arcsin(20/11*x+1/11)*x-8*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x-245
*10^(1/2)*arcsin(20/11*x+1/11)+4*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+924*(-10*x^2-x+3)^
(1/2))*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2*x-1)/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 2.80847, size = 93, normalized size = 1.08 \begin{align*} -\frac{5}{12} \, \sqrt{10} \arcsin \left (\frac{20}{11} \, x + \frac{1}{11}\right ) + \frac{1}{147} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{55 \, x}{7 \, \sqrt{-10 \, x^{2} - x + 3}} + \frac{33}{7 \, \sqrt{-10 \, x^{2} - x + 3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x),x, algorithm="maxima")

[Out]

-5/12*sqrt(10)*arcsin(20/11*x + 1/11) + 1/147*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 55/7
*x/sqrt(-10*x^2 - x + 3) + 33/7/sqrt(-10*x^2 - x + 3)

________________________________________________________________________________________

Fricas [B]  time = 1.811, size = 366, normalized size = 4.26 \begin{align*} \frac{245 \, \sqrt{5} \sqrt{2}{\left (2 \, x - 1\right )} \arctan \left (\frac{\sqrt{5} \sqrt{2}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 4 \, \sqrt{7}{\left (2 \, x - 1\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 924 \, \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{588 \,{\left (2 \, x - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x),x, algorithm="fricas")

[Out]

1/588*(245*sqrt(5)*sqrt(2)*(2*x - 1)*arctan(1/20*sqrt(5)*sqrt(2)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x
^2 + x - 3)) - 4*sqrt(7)*(2*x - 1)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x -
3)) - 924*sqrt(5*x + 3)*sqrt(-2*x + 1))/(2*x - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (5 x + 3\right )^{\frac{3}{2}}}{\left (1 - 2 x\right )^{\frac{3}{2}} \left (3 x + 2\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(3/2)/(1-2*x)**(3/2)/(2+3*x),x)

[Out]

Integral((5*x + 3)**(3/2)/((1 - 2*x)**(3/2)*(3*x + 2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.30725, size = 225, normalized size = 2.62 \begin{align*} \frac{1}{1470} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{5}{12} \, \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{11 \, \sqrt{5} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5}}{35 \,{\left (2 \, x - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x),x, algorithm="giac")

[Out]

1/1470*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/
(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 5/12*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((sqrt
(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 11/35*sqrt(5)*sqrt(5
*x + 3)*sqrt(-10*x + 5)/(2*x - 1)